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Abstract. The electronic structure and electric field gradient (EFG) of the intermetallic
compound Hf2Ni are calculated on the basis of a recently developed first-principles band-
structure full-potential (FP) linear-muffin-tin-orbital (LMTO) scheme within the atomic sphere
approximation (ASA). The calculated value of the EFG at the Hf sites is in very good
agreement with the results obtained by the time-differential perturbed angular correlation
(TDPAC) technique used for the experimental study of the EFG at181Ta impurity sites in
the compound Hf2Ni. The asymmetry parameterη and the individual contributions to the EFG
are discussed. It is shown that various treatments of 4f hafnium electrons have a large influence
on the EFG. The formulae for all of the components of the EFG tensor (the contributions from
the valence electrons as well as the lattice contribution) are derived and presented also.

1. Introduction

The quantities relevant for hyperfine interactions, like the electric field gradient (EFG) tensor
and the isomer shift arising from the electron density at a specific nucleus, have been widely
investigated recently both experimentally and theoretically. In order to obtain information
about local chemical bonding characteristics, we need to understand the behaviour of the
EFG and require a good account of the electronic structural properties of the compounds
investigated. The direct relation of the EFG and the asphericity of the electron density in
the vicinity of the probe nucleus enables one to estimate, from the quadrupole splitting,
the degree of covalency or ionicity of chemical bonds in solids if the nuclear quadrupole
moment is known.

The interaction between the nuclear quadrupole moment and the electric field gradient
at an atomic site with non-cubic point symmetry can be determined by means of various
hyperfine interaction measurements, such as time-differential perturbed angular correlation
(TDPAC), perturbed angular correlation (PAC), and nuclear magnetic resonance (NMR)
measurements. These methods have been used widely to obtain information about
impurities, surfaces, and vacancy-related defects [1–8].

In contrast to the case for the nuclear quadrupole interaction (NQI) of probe nuclei in
pure non-cubic metals, which has been studied extensively, very little information has been
collected for the case of NQIs in ordered intermetallic compounds. In comparison with
pure metals, intermetallic compounds offer more features for investigation by the probe
ion within the same lattice, such as a variety of well defined crystallographic surroundings
consisting of different atoms positioned at different interatomic distances, as well as the
opportunity to establish the degree of order and the nature of the phase transition in the
lattice. Hence, this large group of compounds opens up new possibilities for investigation
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of parameters which characterize the metallic state and contribute to a better understanding
of the properties of EFGs in metals.

In recent years, very sophisticated and precise TDPAC gamma-ray spectroscopy has been
used for the investigation of the nuclear quadrupole interaction of probe nuclei in non-cubic
intermetallic compounds of the transition metal Hf [1, 2]. In TDPAC experiments, probe
atoms are introduced into the material in trace amounts, and they interact with electric and/or
magnetic fields in their vicinity, which are produced by the surrounding atoms, ions, and
electrons. As suitable TDPAC probes have an excited nuclear state, hyperfine interactions
are traced via the gamma–gamma cascade of the probe radioactive decay. A start gamma
ray signals the creation of the intermediate state and a stop gamma ray indicates when
the state has decayed. The anisotropic intensity distribution of the secondγ -quantum with
respect to the direction of propagation of the first one is known as the angular correlation
of the two nuclear radiations. All physical information concerning the perturbation of the
angular correlation by extranuclear fields is expressed through some perturbation factor
which mainly depends on the principal component of the EFG tensor and the asymmetry
parameterη. If an intermediate state of a suitable TDPAC probe lives long enough for the
nuclear spin to precess through an appreciable angle during the intermediate-state lifetime,
then coupling frequencies can be measured with good precision, better than 1%. The most
favourable probes are111In decaying into111Cd, and 181Hf decaying into181Ta, so Hf
intermetallic compounds are very suitable for hyperfine-field measurements by means of
the TDPAC experimental technique.

The EFG is a ground-state property of a solid, and depends sensitively on the asymmetry
of the electronic charge in a crystal. In complex materials the EFG is ideally suited for
the purpose of obtaining a detailed charge distribution. A theoretical understanding of the
origin of the EFG has now been successfully achieved, mainly due to the work of Blaha
and collaborators [9]. Their theory is based on theab initio full-potential (FP) linearized-
augmented-plane-wave (LAPW) method for self-consistent electronic structure calculations.
In the LAPW method the wavefunctions are expressed in terms of atomic-like functions
and plane waves (in the interstitial region beyond the non-overlapping muffin-tin spheres
around the atoms). This method is very onerous computationally for compounds with many
atoms per primitive cell.

Because of this, several groups tried to develop schemes for EFG calculation which
are intermediate between full-blown expensive LAPW calculations and simple unrealistic
models based on the point-charge model with empirical Sternheimer shielding and
antishielding factors [10]. For a brief review of the different attempts to calculate the
EFG, we refer the reader to our recent work [11]. There, we suggested using a FP LMTO
ASA method developed by Savrasov and Savrasov [12] for the calculation of the EFGs
in complex compounds. This method takes into account non-spherical terms in the charge
density, as well as in the potential, and a multiple-κ LMTO basis, and this is all within the
ASA approximation. It permits easy, fast, and precise band calculations to be carried out
for compounds with many atoms per primitive cell, for which other full-potential methods
are extremely time consuming. According to the investigations performed in [11], the
FP LMTO ASA method of Savrasov and Savrasov is probably the best choice currently
available for the calculation of the EFGs of complex compounds.

In order to check our conclusions as regards the appropriateness of the FP LMTO
ASA method for EFG calculations, we intend to present here investigations of Hf2Ni in
the C16-type crystal structure with six atoms per primitive cell. Our treatment of this
compound has been motivated by the existence of very precise TDPAC EFG measurements
with an oversimplified theoretical explanation of the different contributions to the EFG
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published recently [2].
The layout of the present paper is as follows. Firstly, in section 2, we describe the details

of the fully self-consistent paramagnetic calculations specific to the Hf2Ni compound. In
section 3 we present formulae for all of the components of the EFG tensor in an arbitrary
coordinate system, and the evaluation of the EFG tensor at Hf and Ni sites, together with
the asymmetry parameterη for Hf, and briefly discuss the origin of the EFGs at Hf and Ni
sites. In the conclusion of the paper, we discuss the agreement of our theoretical results and
the TDPAC measurements for Hf2Ni presented in reference [2]. The appendix presents the
detailed derivation of all of the components of the EFG tensor. To the best of our knowledge,
this is the first fully detailed derivation for the case in which overlapping atomic spheres
(ASA) fill all of the space of a crystal.

2. Details of the band-structure calculations

The self-consistent paramagnetic electronic structure calculations were carried out for the
intermetallic compound Hf2Ni. Its bands were calculated by the use of the first-principles
version of the FP LMTO ASA method [12]. This is a simpler version of the complete FP
LMTO method [13], in which are taken into account non-muffin-tin (MT) corrections using
the angular momentum representation for all relevant quantities within the MT spheres, as
well as in the interstitial region. The FP LMTO ASA takes into account non-spherical terms
in the charge density, as well as in the potential, and a multiple-κ LMTO basis (κ2 is the
energy of the electronic orbital outside the MT sphere), and this is all within the atomic
sphere approximation, i.e. without considering an interstitial region.

The FP LMTO ASA method is based on density-functional theory in its local-density
approximation (LDA). In this formalism, the crystal space is filled with overlapping Wigner–
Seitz (WS) spheres centred at each atomic position, such that the total volume of WS spheres
equals the volume of the crystal. Within the spheres, the electronic wavefunction is given
as a linear combination of numerical solutions of the Schrödinger equation. This equation
is solved without using any shape approximation—neither for the crystal potential, nor for
the electronic charge density. Due to the finite overlap of the atomic spheres, and the lack
of an interstitial region in the ASA approximation, the non-spherical potential and charge
density are not as accurate as those in generic full-potential methods. The FP LMTO ASA
provides reasonably good bands, but it is not sufficiently accurate for calculating the phonons
and distortions [12]. The electronic charge density is expressed as an angular momentum
expansion inside each WS sphere:

ρel(r) =
∑
L

ρL(r)i
lYL(r̂) (1)

whereL = {l, m} and theYL are spherical harmonics.
The advantage of the FP LMTO ASA method lies in its computational efficiency. The

corresponding numerical program is very fast (nearly standard LMTO ASA speed). Its
accuracy is quite sufficient for the precise calculation of the EFG [11]. Its speed and
accuracy recommend this method for EFG calculations of the complex compounds with
many different atoms per primitive cell, for which the use of other full-potential band
calculational methods would be very time consuming.

The crystal structure of Hf2Ni is of the C16 type (typified by CuAl2), with space
group symmetry D18

4h–I4/mcm [14]. This structure is characterized by two sets of
mutually orthogonal planes with a dense packing of hexagons (honeycomb structure),
with Hf atoms parallel to (110) and (11̄0) planes. The hexagons of different types are
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Figure 1. The tetragonal elementary cell for the compound Hf2Ni.

fully interlocking. The Ni atoms are situated in the channels parallel to thec-axis,
which are formed by this interlocking honeycomb structure (figure 1). A more detailed
crystallographic study of binary compounds with the CuAl2 C16-type structure can be
found in reference [14]. The elementary cell of Hf2Ni shown in figure 1 is not the smallest
one possible. This is because atoms situated in the upper half of the cell (z > 1

2) can
be connected with those in the lower half (z < 1

2) by the same vector: (1
2,

1
2,

1
2). The

Hf2Ni unit cell, which we used in our calculations, contains four Hf atoms at the positions
( 1

2−u, u,0), (1−u, 1
2−u, 0), ( 1

2+u, 1−u, 0), (u, 1
2+u, 0), and the Ni atoms at the positions

(0, 0, 1
4), (

1
2,

1
2,

1
4), whereu = 0.163. The translational vectors are(1, 0, 0), (0, 1, 0), and

( 1
2,

1
2,

1
2). The x- and y-coordinates of the vectors are given in units ofa, while the z-

coordinate is in units ofc. For the lattice parameters, we have used herea = 6.479 Å and
c = 5.271 Å [2].

The band-structure calculation itself is characterized by the following technical details.
All of the electronic states for Hf and Ni have been partitioned into the valence and core
ones. The 6s, 6p, 5d, and 4f valence states were included in the basis set for Hf, and the
4s, 4p, and 3d valence states were included for Ni. The core states were considered as
atomic-like (the frozen-core approximation). A one-κ basis set has been used, with a fixed
tail energy ofκ2 = −0.25 Ryd placed approximately at the centre of the occupied part of the
valence panel. All of the calculations were scalar relativistic, including mass–velocity and
Darwin terms, without spin–orbit interaction. The integration overk-space was performed
using the improved tetrahedron method [15] with a mesh of 163 points in the irreducible
wedge of the first Brillouin zone. The local-density approximation of von Barth and Hedin
[16] was employed in describing the exchange and correlation effects. Finally, the WS
sphere radii have been chosen in such a way as to make the boundary potential values not
very different for Hf and Ni, and taking into consideration the fact that the overlap between
the spheres must not be too large. We found that, with the choice of 3.272 au for the Hf
sphere radius and 2.671 au for the Ni sphere radius, the above-mentioned conditions were
satisfied.

Table 1. Occupation numbers for Hf and Ni sites in the compound Hf2Ni.

s p d f g Charge

Hf 0.754 0.723 2.602 13.94 0.053+0.072
Ni 0.716 0.602 8.441 0.058 0.029−0.144
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Figure 2. (a) The total and projected FP LMTO ASA electronic densities of states for the
compound Hf2Ni. The dashed line indicates the Fermi level. (b) Thel-decomposed FP LMTO
ASA electronic density of states for Hf in the compound Hf2Ni. The dashed line indicates the
Fermi level. (c) Thel-decomposed FP LMTO ASA electronic density of states for Ni in the
compound Hf2Ni. The dashed line indicates the Fermi level.

The FP LMTO ASA electronic band structure of the intermetallic compound Hf2Ni has
some notable characteristics. The main features of the electronic structure of this complex
compound can be seen from the total and projected densities of states (DOS and PDOS),
which are shown in figures 2(a)–2(c). These DOS curves for the paramagnetic phase exhibit
the standard metallic form. The most important states around the Fermi level are hybridized
d states of Hf and d states of Ni. The contributions from the s and p states of hafnium and
nickel, in that region, are less significant. The calculated s and p densities of states around
hafnium and nickel sites are quite similar (cf. figures 2(b) and 2(c)). The similarity of these
states is reflected through the occupation numbers also. For both Hf and Ni, redistribution
of atomic s electrons has occurred, filling up p and d states mostly. This can be clearly
seen from table 1.

Special attention should be given to Hf f states. From figures 2(a) and 2(b) it is obvious
that these states are situated far below the Fermi level, forming a very narrow zone, and
retaining almost all of their own electrons (table 1). These characteristics qualify them
to be considered as pure core states. However, on performing band-structure calculations
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Figure 2. (Continued)

for Hf2Ni under the same conditions as described above, except expelling Hf 4f states
from the valence basis set and putting them in the frozen core, we found some significant
changes in the electronic structure. The DOS pictures look very similar to figures 2(a)–
2(c) (except slight discrepancies in the Hf d zone), but the occupation numbers differ from
those in table 1. This is especially so for Hf sites, where the d zone contains about 0.5
electrons fewer; these electrons are redistributed over other zones. For Ni sites, changes in
the occupation numbers also occur, but they are much less pronounced. These effects do
not change the electronic band picture of the compound substantially. However, they are
important in EFG calculations, which will be discussed in the next section.

3. EFG calculations

The EFG tensor is defined as the second derivative of the electrostatic potential:

Vij = ∂28

∂xi ∂xj

∣∣∣∣
r=0

{xi = x, y, z} (2)

evaluated at the position of the nucleus. HereVij is a symmetric, second-rank tensor with
zero trace because of Laplace’s equation∆8 = 0. Consequently, this tensor has only five
independent components, and it can be diagonalized by rotating the coordinate system. The
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Figure 2. (Continued)

new coordinate system, whose principal axes are{X, Y,Z}, is usually chosen in such a way
that |VXX| 6 |VYY | 6 |VZZ|. The EFG tensor is then completely determined by its principal
componentVZZ, the asymmetry parameter

η =
∣∣∣∣VXX − VYYVZZ

∣∣∣∣ (3)

and the orientation of the principal-axis system. Finally, we should mention the existence
of two special cases. For a nucleus in a cubic environment, all of the components of the
EFG tensor are zero, and for one in an axially symmetrical environment holds,η = 0,
i.e. VXX = VYY .

It is a common practice in the literature to separate calculations of EFGs into calculations
of the valence electron contributionsV valij and the lattice contributionsV lattij . If we write
the potential8 as a sum:

8 = 8ins +8out (4)

where8ins is the potential generated by the charge density inside the observed atomic
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sphere, while8out is determined by the charge density from the rest of the crystal, then

V valij =
∂28ins

∂xi ∂xj

∣∣∣∣
r=0

V lattij =
∂28out

∂xi ∂xj

∣∣∣∣
r=0

.

(5)

Here, we should note that the above separation of the EFG tensor is exact only if one
is dealing with elemental metals. This is because the EFG depends on the choice of the
atomic sphere radii. The way in which the crystal is subdivided into spheres is fixed for
elemental metals. All atomic spheres should have equal radii, and the total volume of the
spheres must be equal to the volume of the crystal. For compounds, however, there is more
than one choice for the sphere radii. Thus, separation (5) makes sense only ifV valij and
V latt
ij change very slowly upon variation of the atomic sphere radii. For the case of Hf2Ni,

this condition is satisfied.
All of the details concerning the calculations ofV valij andV lattij on the basis of equations

(5) are presented in the appendix. There, we have given formulae for all of the components
of the EFG tensor, in an arbitrary coordinate system. These components are expressed as
functions of radial charge-density coefficientsρL, the atomic sphere radii, and the quantity
QL, for whose evaluation only the matrix of structure constants and the charge multipole
moments are needed (see (A14); in this section we have omitted the atomic indexτ ). These
are the quantities usually needed in the course of electronic structure calculations. In this
way, only minor modifications of existing computer codes for the band-structure calculations
are necessary in order to obtain the EFG tensor.

After accomplishing self-consistency for the electronic structure under the conditions
described in previous section, we have evaluated the EFG tensors at Hf and Ni sites in
Hf2Ni, by using formulae (A19) and (A20). We obtained the following results.

First of all, it turns out that the lattice contribution to the EFG tensor is negligible,
about 1% for both Hf and Ni sites. This result is often obtained in EFG calculations for
close-packed metals, and could be explained by the efficiency of the charge screening in
these systems. This is confirmed by the very small charge transfer from Ni to Hf WS
spheres (see table 1). Consequently, from now on we can consider the total EFG to consist
of valence electron contributions only.

For Hf sites, besides diagonal components, there exists a largeVxy-component of
the EFG tensor (in the coordinate system indicated in figure 1). After carrying out
the transformation to the principal-axis system, we obtained only diagonal components:
VXX = +2.0, VYY = +6.9, and for the main component we obtainedVZZ = −8.9, in units
of 1017 V cm−2. The value of the asymmetry parameter obtained in this way isη = 0.556.
The experimental value for the main component of the EFG tensor isVZZ = 10.5, in units
of 1017 V cm−2 (the sign is undetermined), while the asymmetry parameter isη = 0.744 [2].
The time-differential perturbed angular correlation (TDPAC) measurements were performed
at a temperature of 78 K, and the EFG was determined using the value of the quadrupole
moment ofQ = +2.36× 10−24 cm2 from reference [17].

The theoretical value for theVZZ-component at the Hf site is 15% smaller than the
corresponding experimental value, while the asymmetry parameter has a value about 25%
smaller than the experimental one. Taking into account the fact that the EFG is a very subtle
quantity, as well as the fact that the experiment was performed on polycrystalline samples,
we could say that the agreement between our theoretical results and the experimental data
is quite acceptable.
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As regards the orientation of the EFG tensor, our calculations predict thatVXX points in
the [001] direction,VYY in the [1̄10] direction, whileVZZ is parallel to the [110] direction.
This holds for the Hf sites at the positions( 1

2 − u, u,0) and ( 1
2 + u, 1− u, 0). For the Hf

sites at the positions(1− u, 1
2 − u, 0) and(u, 1

2 + u, 0), we have a different situation.VXX
still points in the [001] direction, butVYY is parallel to the [110] direction, whileVZZ is
parallel to the [̄110] direction.

Ni atoms are located at sites which have an axial symmetry (thec-axis is the crystalline
symmetry axis). Therefore, the EFG tensor is diagonal, with the asymmetry parameter
η = 0. For the main component of the EFG tensor we obtainedVZZ = +0.7×1017 V cm−2

(pointing in the direction parallel to thec-axis). There are no experimental data available
for Ni sites in Hf2Ni.

Next, a few words should be said about the origin of the EFG at Hf and Ni sites.
The coefficientsρL(r), which enter the integrals (A19) for the evaluation ofV valij , can be

obtained from the radial wavefunctions9jk
L (r) through the expansion

ρL(r) =
∑
j,k

∑
L′

∑
L′′
9
jk
L′ (r)9

jk
L′′ (r)G

mm′m′′
ll′l′′ 2(EF − Ejk) (6)

wherej denotes the band index,Gmm′m′′
ll′l′′ are Gaunt numbers,EF is the Fermi energy, and

2 is a step function. Expansion (6) enables us to establish individual contributions to the
EFG from s, p, d or f electrons. On the basis of this expression, we decomposed the main
components of the EFG tensor for both Hf and Ni sites, and we present them in table 2.

Table 2. The decomposition of the calculatedVZZ-values in units of 1017 V cm−2.

s–d p–p d–d p–f f–f VZZ

Hf 0.0 −10.1 1.3 0.0 −0.1 −8.9
Ni 0.0 −1.9 2.6 0.0 0.0 0.7

As can be seen, the significant contributions to the EFG come from just p and d electrons,
for both Hf and Ni. The contribution from the p electrons is an order of magnitude greater
than the contribution from the d electrons, and dominates the EFG value for Hf sites. For
Ni atoms, the two contributions are of the same order of magnitude, but with opposite signs.
As a result of their cancellation, the EFG value for Ni is close to zero.

At the end, we will briefly discuss the influence on the EFG of varying the treatment
of the Hf 4f electrons in band-structure calculations. Towards that aim, we have performed
three different kinds of fully self-consistent FP LMTO ASA calculation, as well as
corresponding EFG calculations, and compared their results.

(a) The Hf 4f states were put in the valence panel.This was the most accurate calc-
ulation. The f states of Hf were in the basis set, in the same energy panel as the other
valence states, interacting freely with them. The calculated electronic structure and EFG
have already been presented as a central feature of this paper.

(b) The Hf 4f states were put in the semicore panel.In this calculation, the f states of
Hf were treated in the same way as the valence states (in a self-consistent manner), but in
a separate energy window. The electronic structure obtained is similar to that derived in
procedure (a). As regards the EFG, for the Hf sites we obtainedVZZ = −10.6×1017 V cm−2,
almost reaching the experimental value. A slightly worse agreement with experiment was
found for the asymmetry parameter:η = 0.477. The decomposition ofVZZ is quite similar
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to that in (a). For Ni sites, the value ofVZZ found was identical to that obtained from
procedure (a).

(c) The Hf 4f states were put in the frozen deep core.This was the least accurate
calculation. The 4f states of Hf were considered as atomic-like, with no interaction
with the valence states. The electronic structure obtained was briefly discussed in the
previous section. For the main component of the EFG tensor at Hf sites we obtained
VZZ = −18.0× 1017 V cm−2, which is twice the value obtained using procedure (a). For
the asymmetry parameter,η = 0.474 was obtained. Decomposition ofVZZ gave−17.9
and+2.2 from the p and d electrons respectively, but also an unusually large contribution
from the valence f electrons:−2.3, which almost cancelled the d contribution. In the case
of Ni atoms,VZZ even changed the sign. We obtainedVZZ = −1.1× 1017 V cm−2, as
a consequence of the fact that the p-electron contribution (−3.3) became larger than the
d-electron contribution (+2.2).

From the above considerations, it is clear that Hf 4f electrons play an important role
in the determination of the EFG tensor in the compound Hf2Ni. Their influence on the
EFG values for both Hf and Ni atoms is not manifested directly, through the p–f and f–f
contributions, which are almost zero (table 2). However, interaction of Hf 4f electrons
with other valence states in the compound changes electronic distribution and occupation
numbers of the latter. Owing to this, contributions to the EFG from other valence states are
changed also. This is especially so for the p and d states of Hf and Ni, whose contributions
as obtained from procedures (a) and (c) differ significantly. On the basis of these facts, we
concluded that the 4f states of Hf have to be treated in a self-consistent manner (either in the
valence panel or in the semicore panel) in order for acceptable agreement with experimental
data to be achieved.

4. Concluding remarks

The electronic structure, electric field gradient, and the corresponding asymmetry parameter
η for the intermetallic compound Hf2Ni in the single BCT C16-type structure have been
calculated by the FP LMTO ASA method. Our calculations have given results for the
electric field gradient and the asymmetry parameterη that are nicely represented within
the limitations of the LDA. We have obtained the electric field gradient at the Hf sites as
VZZ = −8.9× 1017 V cm−2 and the asymmetry parameterη = 0.556, to be compared with
the TDPAC experimentally measured values:VZZ = 10.5× 1017 V cm−2 (with the sign
undefined) andη = 0.744 [2]. The importance of taking into account non-spherical terms
in the charge density and potential, as well as that of the proper treatment of the Hf 4f
electrons, follow from these calculations.

In order to explain the high-quality experimental data obtained for Hf2Ni, the authors
of reference [2] used the traditional theoretical model [3] for the decomposition of various
contributions to the EFGVZZ at an impurity nuclear site in a host non-cubic conducting
material. The ionic contribution to the EFG was obtained by calculating two separate lattice
sums with a special choice of the average number of valence electrons per atom and by the
use of special empirical multiplicative Sternheimer enhancement factors (for more details,
see reference [2]). They obtainedV ionZZ = −18.8×1017 V cm−2 at 295 K. The corresponding
asymmetry parameter is aboutη = 0.47. Although one should not place too much reliance
on numerical values of the point-charge-model derived EFG andη, in view of the lack of
exact knowledge of the ionic charges involved, the electronic contribution was calculated
by simple deduction of the ionic contribution from the experimental result for the EFG.
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Obviously, it is impossible to understand fully the origin of the observed behaviour of the
EFG on the basis of such an oversimplified theoretical procedure, especially for metallic
systems. As one might expect, the ionic contribution to the EFG obtained in reference [2]
is in complete disagreement with our findings.

In concluding this work, we should say that the FP LMTO ASA method with spdf
wavefunctions gives values of the EFG andη that agree very well with experimental data.
Bearing in mind the subtlety of the measured quantities, we should be very satisfied with the
agreement obtained between our theoretical and experimental results. This agreement is so
good and the method so fast that we can say that the FP LMTO ASA is probably the optimal
choice balancing accuracy and efficiency for the EFG calculations. Differences of much
greater order between the best theoretical and experimental results were observed even for
several HCP metals [9, 11], where the measurements were carried out on samples of high
purity. In the case of Hf2Ni, the polycrystalline samples used in the TDPAC measurements
of EFG andη were synthesized from Hf with 3N purity which contains a significant level
of zirconium impurities (up to 2%).
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Appendix

Our aim here is to evaluate all of the components of the EFG tensor on the basis of equations
(5). As a first step, we have to calculate the potentials8ins and8out .

rr

r′r

Sτ

Figure A1. A single atomic sphereτ . The charge distribution located in the shaded area
generates the potential8insτ at some pointr.

Let us consider a single atomic sphereτ (figure A1). The potential8ins at some point
r, which is generated by the charge density from the shaded area, is given by the well
known formula

8ins
τ (r) = − |e|

4πε0

∫
ρel(r′) dr′

|r − r′| . (A1)

Substituting the angular momentum expansion ofρel(r), equation (1), into equation
(A1), and using the spherical harmonics expansion of 1/|r − r′|, after integration over
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angles we finally get

8ins
τ (r) = − |e|

4πε0

∑
L

rl ilYL(r̂)
4π

2l + 1

∫ Sτ

r

r ′
−l−1
ρL(r

′)r ′
2

dr ′. (A2)

rr

r′r

r′′rτ

r′τ

τ
′τ

Figure A2. Atomic spheresτ andτ ′. The charge-density distribution in sphereτ ′ generates the
potential8out

τ←τ ′ at some pointr in the sphereτ .

Calculation of8out is much more complex. Let us consider a single atomic sphere
τ again, and evaluate the potential8out

τ←τ ′ in that sphere, generated by the charge-density
distribution located in another atomic sphereτ ′ (figure A2):

8out
τ←τ ′(r) = −

|e|
4πε0

∫
Vτ ′

ρτ ′(r
′
τ ′) dr′

|r − r′| . (A3)

The integration is performed over the volume of the sphereτ ′. If we use the notation
rτ ′ = r− τ ′, we can rearrange the denominator in equation (A3):r− r′ = r− τ ′ − r′τ ′ =
rτ ′ − r′τ ′ . On applying the spherical harmonic expansion of 1/(|rτ ′ − r′τ ′ |), the following
expression is obtained:

8out
τ←τ ′(r) = −

|e|
4πε0

∫
Vτ ′
ρτ ′(r

′
τ ′) dr′τ ′

∑
L′

4π

2l′ + 1

r ′
l′
τ ′

rl
′+1
τ ′

Y ∗L′(r̂
′
τ ′)YL′(r̂τ ′). (A4)

It is our intention further to express8out through the matrix of structure constants.
First of all, we shall give the definitions of Bessel and Hankel functions, as well as their
asymptotic behaviours whenκ → 0 that are used in our computer code:

Jlκτ (r) = (2l + 1)!!

(κSτ )l
jl(κr)

κ→0−→
(
r

Sτ

)l
(A5)

Hlκτ (r) = − (κSτ )
l+1

(2l − 1)!!
hl(κr)

κ→0−→
(
Sτ

r

)l+1

(A6)

wherejl andhl are spherical Bessel and Hankel functions respectively. The Hankel function
H centred at siteτ ′ could be expanded around the siteτ in terms of Bessel functionsJ ,
giving

HL′κτ ′(rτ ′) = −
∑
L

1

Sτ (2l + 1)
JLκτ (rτ )SτL;τ ′L′(κ) (A7)

whereHL′κτ ′(rτ ′) = Hl′κτ ′(rτ ′)il′YL′(r̂τ ′) and JLκτ (rτ ) = Jlκτ (rτ )ilYL(r̂τ ). The expansion
coefficientsSτL;τ ′L′(κ) are the structure constants. In the limitκ → 0, equation (A7)
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becomes(
Sτ ′

rτ ′

)l′+1

il
′
YL′(r̂τ ′) = −

∑
L

1

Sτ (2l + 1)

(
rτ

Sτ

)l
ilYL(rτ )SτL;τ ′L′(κ = 0). (A8)

Substituting the term [1/(rl
′+1
τ ′ )]YL′(r̂τ ′) from equation (A8) into equation (A4), after

some algebra we get

8out
τ←τ ′(r) =

|e|
4πε0

∑
L

(
rτ

Sτ

)l
ilYL(rτ )

√
4π

Sτ (2l + 1)

∑
L′
SτL;τ ′L′(κ = 0)

Mtot
L′τ ′

Sτ ′(2l′ + 1)
(A9)

where the multiple moments from the sphereτ ′ are

Mtot
L′τ ′ =

√
4π

Sl
′
τ ′

∫
Vτ ′
ρτ ′(r

′
τ ′)r
′ l′
τ ′

[
il
′
YL′(r̂

′
τ ′)
]∗

dr′τ ′ . (A10)

With these definitions and expansions it is now possible to evaluate8out (r) in the
sphereτ by means of summing the contributions from other spheres in the elementary cell,
as well as those from all other elementary cells in a crystal:

8out
τ (r) =

∑
T 6=τ−τ ′

∑
τ ′
8out
τ←τ ′+T (r) (A11)

whereT is the translational vector of the crystal lattice. Taking into account the fact that∑
T 6=τ−τ ′

SτL;(τ ′+T )L′(κ = 0) = Sk=0
τL;τ ′L′(κ = 0) (A12)

we finally obtain

8out
τ (r) = − |e|

4πε0

∑
L

(
rτ

Sτ

)l
ilYL(r̂τ )QLτ (A13)

where the vectorQLτ is given as

QLτ = −
√

4π

Sτ (2l + 1)

∑
L′

∑
τ ′
Sk=0
τL;τ ′L′(κ = 0)

Mtot
L′τ ′

Sτ ′(2l′ + 1)
. (A14)

As a last step, we have to transform the expression (A10) into the more convenient
form. If we now write the total charge-density functionρtotτ ′ as a sum of two contributions:

ρτ ′(r
′
τ ′) = −zτ ′δ(r′τ ′)+ ρelτ ′ (r′τ ′) (A15)

and substitute this expression into (A10), we find

Mtot
L′τ ′ = −zτ ′δL′0+

√
4π

Sl
′
τ ′

∫ Sτ ′

0
r ′

l′

τ ′ ρL′τ ′(r
′
τ ′)r
′ 2
τ ′ dr ′τ ′ . (A16)

The first term in the expression (A15) is the contribution to the density from the point
charge of the nucleus, while the second term is the electronic charge density (both from
atomic sphereτ ′).

The formula for the electrostatic potential in the chosen sphereτ , equation (A13),
displays the contribution from all charges outside the sphere. This potential depends on
the coefficientsρLτ and the matrix of structure constantsS for k = 0 andκ = 0. These
quantities were obtained from the FP LMTO ASA computer code after self-consistency was
achieved.
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Finally, we wish to evaluate the components of the EFG tensor, on the basis of equations
(5). To do this we need the derivatives of the functionrlYL(r̂). In order to solve this
problem, we have used the expressions

∇0[f (r)Yml (r̂)] =
√

(l + 1)2−m2

(2l + 1)(2l + 3)

(
df

dr
− l

r
f

)
Yml+1

+
√

l2−m2

(2l − 1)(2l + 1)

(
df

dr
+ l + 1

r
f

)
Yml−1

∇±1[f (r)Yml (r̂)] =
√
(l ±m+ 1)(l ±m+ 2)

2(2l + 1)(2l + 3)

(
df

dr
− l

r
f

)
Ym±1
l+1

−
√
(l ∓m− 1)(l ∓m)
2(2l − 1)(2l + 1)

(
df

dr
+ l + 1

r
f

)
Ym±1
l−1

(A17)

in the cyclic coordinate system [18]. Back-transformation to the Cartesian coordinate system
gives for the partial derivatives

∂

∂x
= − 1√

2
(∇1−∇−1)

∂

∂y
= i√

2
(∇1+∇−1)

∂

∂z
= ∇0.

(A18)

The EFG is now given by the sum of expressions (5), (A2), (A13), (A17), and
(A18). After straightforward but tedious calculations, one can obtain the valence electron
contributions:

V valxx =
|e|

4πε0

√
6π

5

∫ S

0

ρ22+ ρ2−2−
√

2
3ρ20

r
dr

V valyy =
|e|

4πε0

√
6π

5

∫ S

0

−(ρ22+ ρ2−2)−
√

2
3ρ20

r
dr

V valzz =
|e|

4πε0

√
16π

5

∫ S

0

ρ20

r
dr

V valxy = −i
|e|

4πε0

√
6π

5

∫ S

0

ρ2−2− ρ22

r
dr

V valxz =
|e|

4πε0

√
6π

5

∫ S

0

ρ2−1− ρ21

r
dr

V valyz = −i
|e|

4πε0

√
6π

5

∫ S

0

ρ2−1+ ρ21

r
dr

(A19)
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and the lattice contributions:

V lattxx =
|e|

4πε0

√
5

4π

1

2S2
τ

[√
6(Q22τ +Q2−2τ )− 2Q20τ

]
V latt
yy =

|e|
4πε0

√
5

4π

1

2S2
τ

[
−
√

6(Q22τ +Q2−2τ )− 2Q20τ

]
V latt
zz =

|e|
4πε0

√
5

π

1

S2
τ

Q20τ

V lattxy = −i
|e|

4πε0

√
15

2π

1

2S2
τ

(Q2−2τ −Q22τ )

V lattxz =
|e|

4πε0

√
15

2π

1

2S2
τ

(Q2−1τ −Q21τ )

V lattyz = −i
|e|

4πε0

√
15

2π

1

2S2
τ

(Q2−1τ +Q21τ )

(A20)

to the EFG tensor. These formulae are valid for all types of crystal structure, i.e. they do
not depend on the symmetry. They completely determine the EFG tensor, and can be used
in any band-structure calculation method which employs the ASA. In the case of non-ASA
methods, the contribution to the EFG from the interstitial region has to be added.
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